Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Amino Acids ; 55(10): 1213-1222, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572157

RESUMO

Amino acids are essential for the survival of all living organisms and living cells. Amino acid transporters mediate the transport and absorption of amino acids, and the dysfunction of these proteins can induce human diseases. Cationic amino acid transporters (CAT family, SLC7A1-4, and SLC7A14) are considered to be a group of transmembrane transporters, of which SLC7A1-3 are essential for arginine transport in mammals. Numerous studies have shown that CAT family-mediated arginine transport is involved in signal crosstalk between malignant tumor cells and immune cells, especially T cells. The modulation of extracellular arginine concentration has entered a number of clinical trials and achieved certain therapeutic effects. Here, we review the role of CAT family on tumor cells and immune infiltrating cells in malignant tumors and explore the therapeutic strategies to interfere with extracellular arginine concentration, to elaborate its application prospects. CAT family members may be used as biomarkers for certain cancer entities and might be included in new ideas for immunotherapy of malignant tumors.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Neoplasias , Animais , Humanos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Aminoácidos/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Transporte Biológico , Transportador 2 de Aminoácidos Catiônicos/metabolismo , Mamíferos/metabolismo , Microambiente Tumoral
2.
J Biomol Struct Dyn ; 41(23): 13580-13594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762692

RESUMO

Metabolic and signaling mechanisms in mammalian cells are facilitated by the transportation of L-arginine (Arg) across the plasma membrane through cationic amino acid transporter (CAT) proteins. Due to a lack of argininosuccinate synthase (ASS) activity in various tumor cells such as acute myeloid leukemia, acute lymphocytic leukemia, and chronic lymphocytic leukemia, these tumor entities are arginine-auxotrophic and therefore depend on the uptake of the amino acid arginine. Cationic amino acid transporter-1 (CAT-1) is the leading arginine importer expressed in the aforementioned tumor entities. Hence, in the present study, to investigate the transportation mechanism of arginine in CAT-1, we performed molecular dynamics (MD) simulation methods on the modeled human CAT-1. The MM-PBSA approach was conducted to determine the critical residues interacting with arginine within the corresponding binding site of CAT-1. In addition, we found out that the water molecules have the leading role in forming the transportation channel within CAT-1. The conductive structure of CAT-1 was formed only when the water molecules were continuously distributed across the channel. Steered molecular dynamics (SMD) simulation approach showed various energy barriers against arginine transportation through CAT-1, especially while crossing the bottlenecks of the related channel. These findings at the molecular level might shed light on identifying the crucial amino acids in the binding of arginine to eukaryotic CATs and also provide fundamental insights into the arginine transportation mechanisms through CAT-1. Understanding the transportation mechanism of arginine is essential to developing CAT-1 blockers, which can be potential medications for some types of cancers.Communicated by Ramaswamy H. Sarma.


Assuntos
Arginina , Transportador 1 de Aminoácidos Catiônicos , Animais , Humanos , Arginina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Óxido Nítrico Sintase , Simulação de Dinâmica Molecular , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Água/metabolismo , Mamíferos/metabolismo
3.
Arthritis Res Ther ; 24(1): 234, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253807

RESUMO

BACKGROUND: Abnormal proliferation of fibroblast-like synoviocytes (FLSs) in the synovial lining layer is the primary cause of synovial hyperplasia and joint destruction in rheumatoid arthritis (RA). Currently, the relationship between metabolic abnormalities and FLS proliferation is a new focus of investigation. However, little is known regarding the relationship between amino acid metabolism and RA. METHODS: The concentrations of amino acids and cytokines in the synovial fluid of RA (n = 9) and osteoarthritis (OA, n = 9) were detected by LC-MS/MS and CBA assay, respectively. The mRNA and protein expression of cationic amino acid transporter-1 (CAT-1) were determined in FLSs isolated from RA and OA patients by real-time PCR and western blotting. MTT assay, cell cycle, apoptosis, invasion, and cytokine secretion were determined in FLSs knocked down of CAT-1 using siRNA or treated with D-arginine under normoxic and hypoxic culture conditions. A mouse collagen-induced arthritis (CIA) model was applied to test the therapeutic potential of blocking the uptake of L-arginine in vivo. RESULTS: L-rginine was upregulated in the synovial fluid of RA patients and was positively correlated with the elevation of the cytokines IL-1ß, IL-6, and IL-8. Further examination demonstrated that CAT-1 was the primary transporter for L-arginine and was overexpressed on RA FLSs compared to OA FLSs. Moreover, knockdown of CAT-1 using siRNA or inhibition of L-arginine uptake using D-arginine significantly suppressed L-arginine metabolism, cell proliferation, migration, and cytokine secretion in RA FLSs under normoxic and hypoxic culture conditions in vitro but increased cell apoptosis in a dose-dependent manner. Meanwhile, in vivo assays revealed that an L-arginine-free diet or blocking the uptake of L-arginine using D-arginine suppressed arthritis progression in CIA mice. CONCLUSION: CAT-1 is upregulated and promotes FLS proliferation by taking up L-arginine, thereby promoting RA progression.


Assuntos
Arginina , Artrite Experimental , Artrite Reumatoide , Transportador 1 de Aminoácidos Catiônicos , Sinoviócitos , Animais , Camundongos , Aminoácidos/metabolismo , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Cromatografia Líquida , Citocinas/metabolismo , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos Endogâmicos CBA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Espectrometria de Massas em Tandem
4.
Parasit Vectors ; 15(1): 383, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271393

RESUMO

BACKGROUND: The amino acid transporter protein cationic amino acid transporter 1 (CAT1) is part of the nutrient sensor in the fat body of mosquitoes. A member of the SLC7 family of cationic amino acid transporters, it is paramount for the detection of elevated amino acid levels in the mosquito hemolymph after a blood meal and the subsequent changes in gene expression in the fat body. METHODS: We performed a re-annotation of Aedes aegypti cationic amino acid transporters (CATs) and selected the C-terminal tail of CAT1 to perform a yeast two-hybrid screen to identify putative interactors of this protein. One interesting interacting protein we identified was general control nonderepressible 1 (GCN1). We determined the expression pattern of GCN1 in several adult organs and structures using qRT-PCR and western blots. Finally, we knocked down GCN1 using double-stranded RNA and identified changes in downstream signaling intermediates and the effects of knockdown on vitellogenesis and fecundity. RESULTS: In a screen for Ae. aegypti CAT1-interacting proteins we identified GCN1 as a putative interactor. GCN1 is highly expressed in the ovaries and fat body of the mosquito. We provide evidence that eukaryotic translation initiation factor 2 subunit alpha (eIF2α) phosphorylation changed during vitellogenesis and that RNA interference knockdown of GCN1 in whole mosquitoes reduced egg clutch sizes of treated mosquitoes relative to controls. CONCLUSIONS: Aedes aegypti CAT1 and GCN1 are likely interacting partners and GCN1 is likely necessary for proper egg development. Our data suggest that GCN1 is part of a nutrient sensor mechanism in various mosquito tissues involved in vitellogenesis.


Assuntos
Aedes , Animais , Aedes/genética , Aedes/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Transportador 1 de Aminoácidos Catiônicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/genética , Fertilidade
5.
J Interferon Cytokine Res ; 42(9): 501-512, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35900262

RESUMO

Arginine is one of the host semiessential amino acids with diverse biological activities, and arginine depletion is associated with the incidence of many diseases. Arginine depletion induced by diet-derived interferon gamma (IFN-γ) leads to malignant transformation and impaired milk quality in healthy lactating bovine mammary epithelial cells (BMECs). However, the molecular mechanism of IFN-γ-induced arginine depletion is unclear. In this study, the BMEC cell line, mammary alveolar cells-large T antigen cells (MAC-T), was stimulated with IFN-γ (10 ng/mL) for 24 h, and cellular arginine and ornithine quantified by liquid chromatography-tandem mass spectrometry. Carnosine synthase 1 (CARNS1) was identified from RNA-seq data, CARNS1 knockdown was achieved using an shRNA interfering plasmid. The expression levels of CARNS1, argininosuccinate synthetase 1 (ASS1), mitogen-activated protein kinase 11 (p38 MAPK), and phosphorylated (p)-p38, and their cognate genes, were analyzed by Western blotting and real-time quantitative polymerase chain reaction. The results showed that IFN-γ inhibited the biosynthesis of arginine, but enhanced its catalysis via disruption of key enzymes involved in arginine metabolism. IFN-γ also inhibited the expression of CARNS1, ASS1, and cationic amino acid transporter 1, while activating the expression and phosphorylation of p38. However, knockdown of CARNS1 reduced arginine level and ASS1 expression and block of either the IFN-γ receptor IFN-γ receptor 2 or p38 relieved both the expression of Carnosine synthase 1 (CARNS1) and ASS1. In summary, these results indicate that IFN-γ induced arginine depletion through inhibition of CARNS1 signaling via activation of p38 in BMECs. These findings provide a novel insight for IFN-γ-related disease control strategies in dairy cows.


Assuntos
Carnosina , Interferon gama , Animais , Antígenos Virais de Tumores/metabolismo , Arginina/metabolismo , Arginina/farmacologia , Argininossuccinato Sintase/metabolismo , Carnosina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Bovinos , Células Epiteliais/metabolismo , Feminino , Lactação , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Ornitina/metabolismo , RNA Interferente Pequeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Amino Acids ; 54(7): 1101-1108, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35377022

RESUMO

The cationic amino acid transporter 1 (CAT1/SLC7A1) plays a key role in the cellular uptake or export of L-arginine and some of its derivatives. This study investigated the effect of 113 chemically diverse and commonly used drugs (at 20 and 200 µM) on the CAT1-mediated cellular uptake of L-arginine, L-homoarginine, and asymmetric dimethylarginine (ADMA). Twenty-three (20%) of the tested substances showed weak inhibitory or stimulatory effects, but only verapamil showed consistent inhibitory effects on CAT1-mediated transport of all tested substrates.


Assuntos
Arginina , Transportador 1 de Aminoácidos Catiônicos , Transporte Biológico , Transportador 1 de Aminoácidos Catiônicos/genética , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Homoarginina/metabolismo
7.
Amino Acids ; 53(9): 1441-1454, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34245369

RESUMO

L-arginine is a versatile amino acid with a number of bioactive metabolites. Increasing evidence implicates altered arginine metabolism in the aging and neurodegenerative processes. The present study, for the first time, determined the effects of sex and estrous cycle on the brain and blood (plasma) arginine metabolic profile in naïve rats. Female rats displayed significantly lower levels of L-arginine in the frontal cortex and three sub-regions of the hippocampus when compared to male rats. Moreover, female rats had significantly higher levels of L-arginine and γ-aminobutyric acid, but lower levels of L-ornithine, agmatine and putrescine, in plasma relative to male rats. The observed sex difference in brain L-arginine appeared to be independent of the enzymes involved in its metabolism, de novo synthesis and blood-to-brain transport (cationic acid transporter 1 protein expression at least), as well as circulating L-arginine. While the estrous cycle did not affect L-arginine and its metabolites in the brain, there were estrous cycle phase-dependent changes in plasma L-arginine. These findings demonstrate the sex difference in brain L-arginine in the estrous cycle-independent manner. Since peripheral blood has been increasingly used to identify biomarkers of brain pathology, the influences of sex and estrous cycle on blood arginine metabolic profile need attention when experimental research involves female rodents.


Assuntos
Arginina/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Ciclo Estral , Metaboloma , Animais , Arginina/sangue , Transporte Biológico , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
8.
Clin Sci (Lond) ; 134(20): 2755-2769, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33034619

RESUMO

Heart failure (HF) is associated with impaired L-arginine transport. In the present study, we tested the hypothesis that augmented L-arginine transport prevents the loss of kidney function in HF. Renal function was assessed in wildtype mice (WT), transgenic mice with HF (dilated cardiomyopathy, DCM) and double transgenic mice (double transgenic mice with DCM and CAT-1 overexpression, HFCAT-1) with HF and endothelial-specific overexpression of the predominant L-arginine transporter, cationic amino acid transporter-1 (CAT-1) (n=4-8/group). Cardiac function was assessed via echocardiography and left ventricular catheterisation. Renal function was assessed via quantification of albuminuria and creatinine clearance. Plasma nitrate and nitrite levels together with renal fibrosis and inflammatory markers were also quantified at study end. Albumin/creatinine ratio was two-fold greater in DCM mice than in WT mice (P=0.002), and tubulointerstitial and glomerular fibrosis were approximately eight- and three-fold greater, respectively, in DCM mice than in WT mice (P≤0.02). Critically, urinary albumin/creatinine ratio and tubulointerstitial and glomerular fibrosis were less in HFCAT-1 mice than in DCM mice (P<0.05). Renal CAT-1 expression and plasma nitrate and nitrite levels were less in DCM mice compared with WT (P≤0.03) but was greater in HFCAT-1 mice than in DCM mice (P≤0.009). Renal expression of IL-10 was less in DCM mice compared with WT (P<0.001) but was greater in HFCAT-1 mice compared with DCM mice (P=0.02). Our data provide direct evidence that augmented L-arginine transport prevents renal fibrosis, inflammation and loss of kidney function in HF.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/metabolismo , Células Endoteliais/metabolismo , Insuficiência Cardíaca/fisiopatologia , Testes de Função Renal , Rim/fisiopatologia , Animais , Pressão Sanguínea , Peso Corporal , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Transportador 1 de Aminoácidos Catiônicos/genética , Fibrose , Regulação da Expressão Gênica , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Inflamação/genética , Inflamação/patologia , Rim/imunologia , Rim/patologia , Masculino , Camundongos Transgênicos , Miocárdio/patologia , Nitratos/sangue , Nitritos/sangue , Tamanho do Órgão , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Nitric Oxide ; 99: 7-16, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32165314

RESUMO

Insulin regulates the l-arginine/nitric oxide (NO) pathway in human umbilical vein endothelial cells (HUVECs), increasing the plasma membrane expression of the l-arginine transporter hCAT-1 and inducing vasodilation in umbilical and placental veins. Placental vascular relaxation induced by insulin is dependent of large conductance calcium-activated potassium channels (BKCa), but the role of KCa channels on l-arginine transport and NO synthesis is still unknown. The aim of this study was to determine the contribution of KCa channels in both insulin-induced l-arginine transport and NO synthesis, and its relationship with placental vascular relaxation. HUVECs, human placental vein endothelial cells (HPVECs) and placental veins were freshly isolated from umbilical cords and placenta from normal pregnancies. Cells or tissue were incubated in absence or presence of insulin and/or tetraethylammonium, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, iberiotoxin or NG-nitro-l-arginine methyl ester. l-Arginine uptake, plasma membrane polarity, NO levels, hCAT-1 expression and placenta vascular reactivity were analyzed. The inhibition of intermediate-conductance KCa (IKCa) and BKCa increases l-arginine uptake, which was related with protein abundance of hCAT-1 in HUVECs. IKCa and BKCa activities contribute to NO-synthesis induced by insulin but are not directly involved in insulin-stimulated l-arginine uptake. Long term incubation (8 h) with insulin increases the plasma membrane hyperpolarization and hCAT-1 expression in HUVECs and HPVECs. Insulin-induced relaxation in placental vasculature was reversed by KCa inhibition. The results show that the activity of IKCa and BKCa channels are relevant for both physiological regulations of NO synthesis and vascular tone regulation in the human placenta, acting as a part of negative feedback mechanism for autoregulation of l-arginine transport in HUVECs.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Óxido Nítrico/metabolismo , Veias Umbilicais/metabolismo , Adulto , Arginina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Insulina/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Peptídeos/farmacologia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Gravidez , Pirazóis/farmacologia , Veias Umbilicais/efeitos dos fármacos , Adulto Jovem
11.
Amino Acids ; 52(3): 499-503, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32008093

RESUMO

A direct inhibiting effect of NO on the function of CAT-1 and -2A has been postulated to occur via nitrosylation of cysteine residues in the transporters. Neither the NO donor SNAP nor a mixture of SIN-1 and Spermine NONOate, that generates the strong nitrosating agent N2O3, reduced CAT-mediated L-arginine transport. Direct nitros(yl)ation does either not occur in CATs or does not affect their transport function. A regulatory effect of NO or nitrosating agents on CAT-mediated transport under physiological conditions seems, therefore, unlikely.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Animais , Arginina/metabolismo , Humanos , Oócitos , Xenopus laevis
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(2): 165370, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660686

RESUMO

Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.


Assuntos
Adenosina/metabolismo , Diabetes Gestacional/metabolismo , Endotélio Vascular/metabolismo , Insulina/metabolismo , Receptores de Adipocina/metabolismo , Adipocinas/sangue , Antígenos CD/metabolismo , Arginina/metabolismo , Transporte Biológico/fisiologia , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Endotélio/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Feminino , Proteínas Ativadoras de GTPase , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/metabolismo , Placenta/metabolismo , Gravidez , Isoformas de Proteínas , Receptor de Insulina/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
13.
Br J Nutr ; 123(2): 135-148, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31647043

RESUMO

Oral arginine supplements are popular mainly for their presumed vasodilatory benefit. Arginine is a substrate for at least four enzymes including nitric oxide synthase (NOS) and arginase, but the impact of oral supplements on its different metabolic pathways is not clear. Deficiencies of arginine-metabolising enzymes are associated with conditions such as hyperammonaemia, endothelial dysfunction, central nervous system and muscle dysfunction, which complicate the use of oral arginine supplements. We examined the effect of l-arginine (l-Arg) and d-arginine (d-Arg), each at 500 mg/kg per d in drinking water administered for 4 weeks to separate groups of 9-week-old male Sprague-Dawley rats. We quantified the expression of enzymes and plasma, urine and organ levels of various metabolites of arginine. l-Arg significantly decreased cationic transporter-1 expression in the liver and the ileum and increased endothelial NOS expression in the aorta and the kidney and plasma nitrite levels, but did not affect the mean arterial pressure. l-Arg also decreased the expression of arginase II in the ileum, arginine:glycine amidinotransferase in the liver and the kidney and glyoxalase I in the liver, ileum and brain, but increased the expression of arginine decarboxylase and polyamines levels in the liver. d-Arg, the supposedly inert isomer, also unexpectedly affected the expression of some enzymes and metabolites. In conclusion, both l- and d-Arg significantly affected enzymes and metabolites in several pathways that use arginine as a substrate and further studies with different doses and treatment durations are planned to establish their safety or adverse effects to guide their use as oral supplements.


Assuntos
Arginina/administração & dosagem , Arginina/metabolismo , Suplementos Nutricionais , Administração Oral , Animais , Arginase/efeitos dos fármacos , Arginase/metabolismo , Arginina/farmacologia , Transportador 1 de Aminoácidos Catiônicos/efeitos dos fármacos , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Creatina/efeitos dos fármacos , Creatina/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Nitratos/sangue , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Nitritos/sangue , Ratos , Ratos Sprague-Dawley
14.
FASEB J ; 33(12): 14516-14527, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648581

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle, which is closely related to human T-cell leukemia viruses. BLV has spread worldwide and causes a serious problem for the cattle industry. The cellular receptor specifically binds with viral envelope glycoprotein (Env), and this attachment mediates cell fusion to lead virus entry. BLV Env reportedly binds to cationic amino acid transporter 1 (CAT1)/solute carrier family 7 member 1 (SLC7A1), but whether the CAT1/SLC7A1 is an actual receptor for BLV remains unknown. Here, we showed that CAT1 functioned as an infection receptor, interacting with BLV particles. Cells expressing undetectable CAT1 levels were resistant to BLV infection but became highly susceptible upon CAT1 overexpression. CAT1 exhibited specific binding to BLV particles on the cell surface and colocalized with the Env in endomembrane compartments and membrane. Knockdown of CAT1 in permissive cells significantly reduced binding to BLV particles and BLV infection. Expression of CAT1 from various species demonstrated no species specificity for BLV infection, implicating CAT1 as a functional BLV receptor responsible for its broad host range. These findings provide insights for BLV infection and for developing new strategies for treating BLV and preventing its spread.-Bai, L., Sato, H., Kubo, Y., Wada, S., Aida, Y. CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/metabolismo , Leucose Enzoótica Bovina/metabolismo , Vírus da Leucemia Bovina/metabolismo , Animais , Células CHO , Células COS , Transportador 1 de Aminoácidos Catiônicos/genética , Gatos , Bovinos , Chlorocebus aethiops , Cricetinae , Cricetulus , Leucose Enzoótica Bovina/virologia , Células HEK293 , Células HeLa , Humanos , Vírus da Leucemia Bovina/patogenicidade , Ligação Proteica , Ovinos , Suínos , Proteínas do Envelope Viral/metabolismo
15.
Int J Mol Sci ; 20(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027156

RESUMO

We investigated whether the substrate for nitric oxide (NO) production, extracellular l-arginine, contributes to relaxations induced by activating small (SKCa) conductance Ca2+-activated potassium channels. In endothelial cells, acetylcholine increased 3H-l-arginine uptake, while blocking the SKCa and the intermediate (IKCa) conductance Ca2+-activated potassium channels reduced l-arginine uptake. A blocker of the y+ transporter system, l-lysine also blocked 3H-l-arginine uptake. Immunostaining showed co-localization of endothelial NO synthase (eNOS), SKCa3, and the cationic amino acid transporter (CAT-1) protein of the y+ transporter system in the endothelium. An opener of SKCa channels, cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) induced large currents in endothelial cells, and concentration-dependently relaxed porcine retinal arterioles. In the presence of l-arginine, concentration-response curves for CyPPA were leftward shifted, an effect unaltered in the presence of low sodium, but blocked by l-lysine in the retinal arterioles. Our findings suggest that SKCa channel activity regulates l-arginine uptake through the y+ transporter system, and we propose that in vasculature affected by endothelial dysfunction, l-arginine administration requires the targeting of additional mechanisms such as SKCa channels to restore endothelium-dependent vasodilatation.


Assuntos
Arginina/farmacologia , Arteríolas/fisiologia , Espaço Extracelular/química , Ativação do Canal Iônico/efeitos dos fármacos , Vasos Retinianos/fisiologia , Vasodilatação/efeitos dos fármacos , Animais , Arteríolas/efeitos dos fármacos , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Vasos Retinianos/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Suínos
16.
Virology ; 532: 82-87, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31035110

RESUMO

Cytoplasmic tails of envelope (Env) glycoproteins of many retroviruses inhibit their membrane fusion activity. The cytoplasmic 16-amino acid peptide of ecotropic murine leukemia virus (E-MLV) Env protein, called the R-peptide, also inhibits the membrane fusion activity of the Env protein. However, the molecular mechanism of the inhibition has not been elucidated yet. In this study, we found that R-peptide-containing Env protein of E-MLV binds to the cell surface receptor cationic amino acid transporter-1 (CAT-1) with weaker affinity than R-peptide-truncated Env protein. Consistent with this result, R-peptide-containing Env protein had less efficient inhibition of E-MLV vector infection than R-peptide-truncated Env protein. R-peptide truncation has been reported to induce conformational change in the surface subunit of E-MLV Env protein that interacts with the receptor. Taken together, our findings indicate that R-peptide truncation induces conformational change in the receptor-binding domain of the E-MLV Env protein and facilitates the Env-receptor interaction.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/metabolismo , Interações Hospedeiro-Patógeno/genética , Vírus da Leucemia Murina/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Sítios de Ligação , Transportador 1 de Aminoácidos Catiônicos/química , Transportador 1 de Aminoácidos Catiônicos/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Vírus da Leucemia Murina/genética , Fusão de Membrana , Camundongos , Células NIH 3T3 , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores Virais/química , Receptores Virais/genética , Transdução de Sinais , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
17.
Hypertension ; 73(4): 878-884, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30798662

RESUMO

Endothelial dysfunction because of nitric oxide inactivation has been suggested to play a role in the pathogenesis of preeclampsia. During pregnancy, L-arginine transport by CAT-1 (cationic amino acid transporter 1), the only transporter for eNOS (endothelial nitric oxide synthase) is inhibited. We hypothesize that maternal arginine deficiency contributes to the development of preeclampsia. Adenovirus-mediated overexpression of sFlt-1 (soluble fms-like tyrosine kinase 1) in virgin and pregnant mice resulted in glomerular endotheliosis, hypertension, and albuminuria. L-arginine prevented the increase in blood pressure and albuminuria in Flt-1 pregnant but not in Flt-1 virgin mice. Flt-1 augmented arginine transport in pregnant but not in virgin dames. Ex vivo inhibition of CAT-2 leaving exclusively CAT-1 activity, decreased arginine transport velocities in Flt-1 animals more prominently in pregnant dames. Phosphorylated CAT-1/CAT-1 increased in pregnant, sFlt-1-pregnant, and sFlt-1 virgin mice. CAT-2 increased in Flt-1-pregnant and Flt-1-virgin dames. L-arginine augmented arginine transport in pregnant and Flt-pregnant mice and prevented the increase in pCAT-1 and CAT-2 expression. Glomerular cGMP (cyclic guanosine monophosphate) generation as a measure of eNOS activity was decreased in all Flt-1 treated animals. L-arginine abolished the decrease in cGMP levels only in Flt-1-pregnant mice. In conclusion, glomerular endothelial NO generation is compromised in Flt-1-pregnant mice because of CAT-1 inhibition induced by a combined effect of pregnancy and preeclampsia which involves: phosphorylation of CAT-1 and induction of CAT-2. These processes contribute to the clinical syndrome of preeclampsia in mice and are prevented by L-arginine.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/metabolismo , Glomérulos Renais/metabolismo , Pré-Eclâmpsia/metabolismo , Prenhez , Animais , Modelos Animais de Doenças , Endotélio/metabolismo , Feminino , Transporte de Íons , Camundongos , Óxido Nítrico/metabolismo , Fosforilação , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/fisiopatologia , Gravidez , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/toxicidade
18.
Animal ; 13(2): 326-332, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29929568

RESUMO

Peptide transporter 1 (SLC15A1, PepT1), excitatory amino acid transporter 3 (SLC1A1, EAAT3) and cationic amino acid transporter 1 (SLC7A1, CAT1) were identified as genes responsible for the transport of small peptides and amino acids. The tissue expression pattern of rabbit (SLC15A1, SLC7A1 and SLC1A1) across the digestive tract remains unclear. The present study investigated SLC15A1, SLC7A1 and SLC1A1 gene expression patterns across the digestive tract at different stages of development and in response to dietary protein levels. Real time-PCR results indicated that SLC15A1, SLC7A1 and SLC1A1 genes throughout the rabbits' entire development and were expressed in all tested rabbit digestive sites, including the stomach, duodenum, jejunum, ileum, colon and cecum. Furthermore, SLC7A1 and SLC1A1 mRNA expression occurred in a tissue-specific and time-associated manner, suggesting the distinct transport ability of amino acids in different tissues and at different developmental stages. The most highly expressed levels of all three genes were in the duodenum, ileum and jejunum in all developmental stages. All increased after lactation. With increased dietary protein levels, SLC7A1 mRNA levels in small intestine and SLC1A1 mRNA levels in duodenum and ileum exhibited a significant decreasing trend. Moreover, rabbits fed a normal level of protein had the highest levels of SLC15A1 mRNA in the duodenum and jejunum (P<0.05). In conclusion, gene mRNA differed across sites and with development suggesting time and sites related differences in peptide and amino acid absorption in rabbits. The effects of dietary protein on expression of the three genes were also site specific.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/genética , Proteínas na Dieta/metabolismo , Digestão/genética , Transportador 3 de Aminoácido Excitatório/genética , Expressão Gênica , Transportador 1 de Peptídeos/genética , Coelhos/genética , Animais , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 1 de Peptídeos/metabolismo , Coelhos/crescimento & desenvolvimento , Coelhos/metabolismo , Distribuição Aleatória
19.
Vet Res ; 49(1): 95, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236161

RESUMO

Transmissible gastroenteritis virus (TGEV) is a coronavirus that causes severe diarrhea in suckling piglets. TGEV primarily targets and infects porcine intestinal epithelial cells, which play an important role in nutrient absorption. However, the effects of TGEV infection on nutrient absorption in swine have not yet been investigated. In this study, we evaluated the impact of TGEV infection on arginine uptake using the porcine small intestinal epithelial cell line IPEC-J2 as a model system. High performance liquid chromatography (HPLC) analyses showed that TGEV infection leads to reduced arginine uptake at 48 hours post-infection (hpi). Expression of cationic amino acid transporter 1 (CAT-1) was attenuated as well. TGEV infection induced activation of phospho-protein kinase C α (p-PKC α), phospho-epidermal growth factor receptor (p-EGFR), and enhanced the expression of caveolin-1, all of which appear to be involved in down-regulating arginine uptake and CAT-1 expression. These results illuminate the relationship between TGEV infection and nutrient absorption, and further our understanding of the mechanisms of TGEV infection.


Assuntos
Arginina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Regulação para Baixo , Gastroenterite Suína Transmissível/genética , Regulação da Expressão Gênica , Vírus da Gastroenterite Transmissível/fisiologia , Animais , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Linhagem Celular , Gastroenterite Suína Transmissível/fisiopatologia , Gastroenterite Suína Transmissível/virologia , Intestino Delgado/metabolismo , Intestino Delgado/virologia , Transdução de Sinais , Suínos
20.
Nitric Oxide ; 80: 24-31, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30056252

RESUMO

Blockade of the mineralocorticoid receptor (MCR) has been shown to improve endothelial function far beyond blood pressure control. In the current studies we have looked at the effect of MCR antagonists on cationic amino acid transporter-1 (CAT-1), a major modulator of endothelial nitric oxide (NO) generation. Using radio-labeled arginine, {[3H] l-arginine} uptake was determined in human umbilical vein endothelial cells (HUVEC) following incubation with either spironolactone or eplerenone with or without silencing of MCR. Western blotting for CAT-1, PKCα and their phosphorylated forms were performed. NO generation was measured by using Griess reaction assay. Both Spironolactone and eplerenone significantly increased endothelial arginine transport, an effect which was further augmented by co-incubation with aldosterone, and blunted by either silencing of MCR or co-administration of amiloride. Following MCR blockade, we identified two bands for CAT-1. The addition of tunicamycin (an inhibitor of protein glycosylation) or MCR silencing resulted in disappearance of the extra band and prevented the increase in arginine transport. Only spironolactone decreased CAT-1 phosphorylation through inhibition of PKCα (CAT-1 inhibitor). Subsequently, incubation with either MCR antagonists significantly augmented NO2/NO3 levels (stable NO metabolites) and this was attenuated by silencing of MCR or tunicamycin. GO 6076 (PKCα inhibitor) intensified the increase of NO metabolites only in eplerenone treated cells. In conclusion spironolactone and eplerenone augment arginine transport and NO generation through modulation of CAT-1 in endothelial cells. Both MCR antagonists activate CAT-1 by inducing its glycosylation while only spironolactone inhibits PKCα.


Assuntos
Arginina/metabolismo , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Óxido Nítrico/metabolismo , Espironolactona/farmacologia , Transporte Biológico/efeitos dos fármacos , Transportador 1 de Aminoácidos Catiônicos/genética , Eplerenona/farmacologia , Glicosilação/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/antagonistas & inibidores , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...